Aggregation and Colloidal Stability of Commercially Available Al2O3 Nanoparticles in Aqueous Environments

نویسندگان

  • Julie Mui
  • Jennifer Ngo
  • Bojeong Kim
چکیده

The aggregation and colloidal stability of three, commercially-available, gamma-aluminum oxide nanoparticles (γ-Al₂O₃ NPs) (nominally 5, 10, and 20-30 nm) were systematically examined as a function of pH, ionic strength, humic acid (HA) or clay minerals (e.g., montmorillonite) concentration using dynamic light scattering and transmission electron microscopy techniques. NPs possess pH-dependent surface charges, with a point of zero charge (PZC) of pH 7.5 to 8. When pH < PZC, γ-Al₂O₃ NPs are colloidally stable up to 100 mM NaCl and 30 mM CaCl₂. However, significant aggregation of NPs is pronounced in both electrolytes at high ionic strength. In mixed systems, both HA and montmorillonite enhance NP colloidal stability through electrostatic interactions and steric hindrance when pH ≤ PZC, whereas their surface interactions are quite limited when pH > PZC. Even when pH approximates PZC, NPs became stable at a HA concentration of 1 mg·L-1. The magnitude of interactions and dominant sites of interaction (basal planes versus edge sites) are significantly dependent on pH because both NPs and montmorillonite have pH-dependent (conditional) surface charges. Thus, solution pH, ionic strength, and the presence of natural colloids greatly modify the surface conditions of commercial γ-Al₂O₃ NPs, affecting aggregation and colloidal stability significantly in the aqueous environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pH, Initial Concentration, Background Electrolyte, and Ionic Strength on Cadmium Adsorption by TiO2 and γ-Al2O3 Nanoparticles

The entrance of Cd (II) to aqueous environments causes a major problem to human health. The current article examines the efficiency of TiO2 and γ-Al2O3 nanoparticles in Cd (II) removal from aqueous medium as influenced by different chemical factors, such as pH, initial concentration, background electrolyte, and ionic strength, in accordance with standard experimental methods. It conducts Batch ...

متن کامل

Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles' surface is essential. During this process, the original coating is exchange...

متن کامل

Effect of pH, Initial Concentration, Background Electrolyte, and Ionic Strength on Cadmium Adsorption by TiO2 and γ-Al2O3 Nanoparticles

The entrance of Cd (II) to aqueous environments causes a major problem to human health. The current article examines the efficiency of TiO2 and γ-Al2O3 nanoparticles in Cd (II) removal from aqueous medium as influenced by different chemical factors, such as pH, initial concentration, background electrolyte, and ionic strength, in accordance with standard experimental methods. It conducts Batch ...

متن کامل

Colloidal stability of zwitterionic polymer-grafted gold nanoparticles in water.

We investigate the colloidal stability of gold nanoparticles (AuNPs) coated with zwitterionic sulfobetaine polymers in aqueous solution. Zwitterionic polymers with different molar masses, synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of N,N'-dimethyl(methacrylamido propyl)ammonium propanesulfonate (SPP) exhibit a well known Upper Critical Solution Tempera...

متن کامل

Dynamic light scattering investigations of nanoparticle aggregation following a light-induced pH jump.

There are many important processes where the stability of nanoparticles can change due to changes in solution environment. These processes are often difficult to study under controlled changes to the solution conditions. Dynamic light scattering was used to measure the initial kinetics of aggregation of carboxylated polystyrene nanoparticles after well-defined pH jumps using aqueous solutions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016